skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Zhenhua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We investigate an infinite‐horizon time‐inconsistent mean‐field game (MFG) in a discrete time setting. We first present a classic equilibrium for the MFG and its associated existence result. This classic equilibrium aligns with the conventional equilibrium concept studied in MFG literature when the context is time‐consistent. Then we demonstrate that while this equilibrium produces an approximate optimal strategy when applied to the related ‐agent games, it does so solely in a precommitment sense. Therefore, it cannot function as a genuinely approximate equilibrium strategy from the perspective of a sophisticated agent within the ‐agent game. To address this limitation, we propose a newconsistentequilibrium concept in both the MFG and the ‐agent game. We show that a consistent equilibrium in the MFG can indeed function as an approximate consistent equilibrium in the ‐agent game. Additionally, we analyze the convergence of consistent equilibria for ‐agent games toward a consistent MFG equilibrium as tends to infinity. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available April 30, 2026
  3. Free, publicly-accessible full text available March 31, 2026
  4. This paper considers an infinite-horizon Markov decision process (MDP) that allows for general nonexponential discount functions in both discrete and continuous time. Because of the inherent time inconsistency, we look for a randomized equilibrium policy (i.e., relaxed equilibrium) in an intrapersonal game between an agent’s current and future selves. When we modify the MDP by entropy regularization, a relaxed equilibrium is shown to exist by a nontrivial entropy estimate. As the degree of regularization diminishes, the entropy-regularized MDPs approximate the original MDP, which gives the general existence of a relaxed equilibrium in the limit by weak convergence arguments. As opposed to prior studies that consider only deterministic policies, our existence of an equilibrium does not require any convexity (or concavity) of the controlled transition probabilities and reward function. Interestingly, this benefit of considering randomized policies is unique to the time-inconsistent case. 
    more » « less
  5. Free, publicly-accessible full text available November 1, 2025
  6. Abstract Polymer materials suffer mechano-oxidative deterioration or degradation in the presence of molecular oxygen and mechanical forces. In contrast, aerobic biological activities combined with mechanical stimulus promote tissue regeneration and repair in various organs. A synthetic approach in which molecular oxygen and mechanical energy synergistically initiate polymerization will afford similar robustness in polymeric materials. Herein, aerobic mechanochemical reversible-deactivation radical polymerization was developed by the design of an organic mechano-labile initiator which converts oxygen into activators in response to ball milling, enabling the reaction to proceed in the air with low-energy input, operative simplicity, and the avoidance of potentially harmful organic solvents. In addition, this approach not only complements the existing methods to access well-defined polymers but also has been successfully employed for the controlled polymerization of (meth)acrylates, styrenic monomers and solid acrylamides as well as the synthesis of polymer/perovskite hybrids without solvent at room temperature which are inaccessible by other means. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  7. Abstract We consider three equilibrium concepts proposed in the literature for time‐inconsistent stopping problems, including mild equilibria (introduced in Huang and Nguyen‐Huu (2018)), weak equilibria (introduced in Christensen and Lindensjö (2018)), and strong equilibria (introduced in Bayraktar et al. (2021)). The discount function is assumed to be log subadditive and the underlying process is one‐dimensional diffusion. We first provide necessary and sufficient conditions for the characterization of weak equilibria. The smooth‐fit condition is obtained as a by‐product. Next, based on the characterization of weak equilibria, we show that an optimal mild equilibrium is also weak. Then we provide conditions under which a weak equilibrium is strong. We further show that an optimal mild equilibrium is also strong under a certain condition. Finally, we provide several examples including one showing a weak equilibrium may not be strong, and another one showing a strong equilibrium may not be optimal mild. 
    more » « less